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SUMMARY

The traditional process of antibody discovery is limited by inefficiency, high costs, and low success rates. 
Recent approaches employing artificial intelligence (AI) have been developed to optimize existing antibodies 
and generate antibody sequences in a target-agnostic manner. In this work, we present MAGE (monoclonal 
antibody generator), a sequence-based protein language model (PLM) fine-tuned for the task of generating 
paired human variable heavy- and light-chain antibody sequences against targets of interest. We show that 
MAGE can generate novel and diverse antibody sequences with experimentally validated binding specificity 
against SARS-CoV-2, an emerging avian influenza H5N1, and respiratory syncytial virus A (RSV-A). MAGE 
represents a first-in-class model capable of designing human antibodies against multiple targets with no 
starting template.

INTRODUCTION

Human monoclonal antibodies are a diverse class of therapeu-

tics that can theoretically target any protein with exquisite spec-

ificity, making them promising candidates for treating a wide va-

riety of diseases. Until recently, antibody development has been 

primarily driven by discovery-based experimental methods, typi-

cally through screening human or animal samples with prior 

exposure to an antigen target of interest. Even with recent devel-

opments that have drastically improved the throughput of anti-

body discovery methods, this process is laborious, slow, and 

cost-ineffective. The continued growth of the therapeutic market 

and range of applications for monoclonal antibodies presents an

increased demand for in silico tools that accelerate and expand 

the capabilities of antibody discovery.

Recent breakthroughs in artificial intelligence (AI), most 

notably the unmatched performance of transformer-based large 

language models (LLMs) and diffusion models on various 

tasks, have enabled a surge in computational approaches for 

antibody-related design tasks. Such methods include affinity 

maturation, 1,2 antibody redesign, 1,3,4 and generation of single-

domain antibodies. 5,6 However, no published methods have 

demonstrated the ability to design template-free, antigen-spe-

cific antibodies. Existing approaches are limited to antibody 

redesign, with a focus on generation of complementarity-deter-

mining regions (CDRs), requiring an initial antibody template to
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provide variable genes and framework regions for the antibody. 

Additionally, such models are primarily structure-based and 

require antibody-antigen complexes for training, which is signif-

icantly limiting due to insufficient data, especially in the context 

of paired, human antibodies.

In this manuscript, we present MAGE (monoclonal antibody 

generator), a protein language model (PLM) capable of gener-

ating paired heavy- and light-chain antibody-variable sequences 

with binding specificity against input antigen sequences. 

MAGE was developed by fine-tuning Progen2, an auto-regres-

sive decoder LLM that was pretrained on general protein se-

quences. 7 Progen2 learns from observed amino acid sequences 

by next-token prediction, using self-attention to capture com-

plex dependencies within input sequences. Here, we leveraged 

this pretrained model’s learned representation of amino acid se-

quences as a starting point for learning human antibody 

sequence features associated with binding specificity to diverse 

antigen targets. We show that MAGE is capable of generating 

antibodies that exhibit diverse sequence features, including 

heavy- and light-chain variable gene usage, levels of somatic hy-

permutation (SHM), and novel CDRs not observed in the training 

data. When prompted with SARS-CoV-2 wild-type receptor 

binding domain (RBD), binding specificity was successfully 

confirmed for 9/20 of experimentally validated MAGE-generated 

antibodies, including one antibody with better than 10 ng/mL po-

tency of SARS-CoV-2 neutralization. Binding antibodies were 

also designed and validated against respiratory syncytial virus 

A (RSV-A) prefusion F (7/23 antibodies), which was significantly 

less represented in the training data. We determined a cryo-elec-

tron microscopy (cryo-EM) structure of two MAGE-designed an-

tibodies in complex with RSV F, demonstrating that MAGE gen-

erates antibodies with diverse binding modes and can 

incorporate impactful residues at key binding interfaces. Finally, 

MAGE-designed antibodies were validated against H5/TX/24 

hemagglutinin (HA) (5/18 antibodies), demonstrating zero-shot 

learning capabilities against an influenza virus strain that was 

not present in the training data. MAGE therefore represents a 

first-in-class model capable of designing novel human anti-

bodies with demonstrated functionality against antigen targets 

of interest, without having to provide any part of the antibody 

sequence as a starting template.

RESULTS

Fine-tuning a PLM for antigen-specific antibody 

generation

Here, we present a PLM called MAGE, fine-tuned for generating 

paired heavy- and light-chain antibody-variable sequences that 

bind to a prompted antigen sequence. Toward this goal, the pre-

trained model Progen2 7 was fine-tuned on a training database of 

18,507 antibody-antigen sequence pairs curated from literature 

and existing databases (Figure 1A). The largest group of se-

quences were sourced from the coronavirus antibody database 

(CoV-AbDab), 8 from which 10,043 human antibodies with 

published heavy- and light-chain sequences were selected 

(Figure S1A), then mapped back to their cognate antigen se-

quences based on reported binding specificities. In addition, 

sequences for antibody-antigen pairs across a diverse range of

antigens were pulled from the structural antibody database 

(SAbDab) 9 (n = 2,113) and the patent and literature antibody 

database (PLAbDab) 10 (n = 987). Finally, antibody sequences 

were manually curated from literature containing high-

throughput quantitative binding data for paired antibody se-

quences (n = 2,030). 11–23

In addition to published data, we collected an original dataset 

of antigen-specific antibody sequences against diverse viral an-

tigens using LIBRA-seq (linking B cell receptors to antigen-spec-

ificity through sequencing), a high-throughput method for identi-

fication of antigen-specific B cell receptors (BCRs) against an 

antigen panel. 19 A panel of 18 diverse antigens was used to 

screen peripheral blood mononuclear cells (PBMCs) from 20 do-

nors distributed across four groups (HIV-infected, influenza-

vaccinated, COVID-19-convalescent, and healthy). After filtering 

based on LIBRA-seq scores (LSSs), this dataset yielded 1,924 

BCR sequences with LIBRA-seq signal for at least one antigen 

in the panel (Figure S1B).

In total, 67% (12,480/18,507) of the training data consist of an-

tibodies against coronavirus (CoV)-related antigens, with 3,000 

(16.2%) antibodies included against the exact wild-type RBD 

sequence used for prompting (Figure 1B). Of the remaining 

training examples, the most abundant target groups were viral 

antigens including influenza, RSV, and HIV-1 (Figure 1C). There 

were, however, 987 other training antibodies with specificities 

against 535 different antigens sourced from the SAbDab, many 

of which were not viral proteins (Table S1). Using this diverse 

training dataset, we aimed to present a model capable of gener-

ating functional, target-specific antibodies against input antigen 

sequences.

Even with the inclusion of antibody-antigen pairs from these 

various data sources, the training dataset was far too small to 

train an LLM from scratch. General protein models have been 

shown to have superior performance on antibody-specific tasks, 

due to the complex nature of understanding the input antigens, 

antibodies, and the interactions between them. 1,7 We therefore 

fine-tuned the general protein model Progen2-base, 7 which 

was pretrained on over a billion protein sequences across 

diverse domains, for the task of antigen-specific antibody gener-

ation. This was achieved by providing antibody-antigen pairs as 

concatenated sequences, separated by tokens between the 

heavy and light chains ([LC]) and between the antibody and an-

tigen sequences ([SEP]) (See STAR Methods section ‘‘Fine-

tuning’’; Figure S1C). Progen2-base has a context window of 

2,048 tokens, well beyond the length of larger antigens including 

the full SARS-2 spike (1,261 residues), enabling the model to 

process these concatenated sequences during training.

Generated antibody sequences are diverse and distinct 

from training data

Following fine-tuning, the trained model could be prompted with 

an antigen sequence of interest to generate an output containing 

an antibody-variable heavy- and light-chain sequence. To eval-

uate the ability of MAGE to generate antigen-specific antibody 

sequences, we selected three targets that span the range of 

training data representation. We first tested generation against 

SARS-CoV-2 RBD, which had disproportionately higher repre-

sentation in the training data. Then, to show that the model
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can successfully work for antigen targets with less training data, 

we tested against two additional antigens. To assess the quality 

and diversity of sequences generated by MAGE, 1,000 antibody 

sequences were generated against RBD and aligned to a human

germline reference using IMGT numbering, 24 and then filtered 

using the following criteria (described in detail in STAR 

Methods): (1) removal of sequences without a recognizable 

heavy or light chain, (2) removal of sequences with any missing

Figure 1. Progen2 was fine-tuned for antigen-specific antibody generation

(A) An antigen-specific antibody database was curated, in combination with large-scale LIBRA-seq datasets, in order to fine-tune Progen2 for paired chain 

antibody generation against antigen prompts.

(B) Counts of antibody-antigen pairs in training database, grouped by CoV specificity.

(C) Training counts of non-CoV antigen groups.

(D) Percentage of 1,000 antibodies generated against RBD that use each combination of heavy and light V genes. The top-10 most-common genes are shown for 

each.

(E) Generated variable heavy (VH) and variable light (VL) sequences were aligned to the training data to find the minimum number of mutations between each 

generated sequence and any training sequence.

(F) For the most similar training sequence from the comparison in (C), the distance was calculated between each region of the VH or VL sequence. The mean 

across all RBD-generated sequences are shown with error bars representing the standard deviation.

See also Figure S1 and Table S1.
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CDRs or framework regions (FWRs), and (3) removal of variable 

heavy or light sequences fewer than 100 amino acids (aa) in 

length. Almost all (991/1,000) of the generated sequences 

passed these filters. Additionally, sequences were scored for 

‘‘humanness’’ using the open source platform BioPhi OASis. 25 

Based on suggested thresholds, sequences with an OASis 

percentile score less than 70% were removed, with only 2.2% 

(22/991) sequences falling below this humanness threshold 

(Figure S1D). While these sequences could represent viable, 

particularly novel sequences, this model was intended to 

generate human antibodies for further characterization, and 

these low-scoring antibodies by OASis were removed accord-

ingly. In total, 969 of 1,000 generated sequences were 

retained for further analysis and down-selection for in vitro 

characterization.

The RBD-prompted sequences displayed diverse sequence 

features, using 37 unique variable heavy-chain genes and 30 

unique variable light-chain genes, not accounting for different al-

leles. In total, 322 different pairs of heavy and light variable genes 

were represented in the generated sequences, with the most 

frequently used pair (IGHV3-53/66: IGKV1-33) representing 

only 13.9% (135/969) of sequences (Figure 1D). Generated se-

quences also show diverse CDRs, with heavy-chain CDR3 

(CDRH3) lengths ranging from 5 to 28 aa (mean = 16), and 

light-chain CDR3s (CDRL3) lengths ranging from 7 to 12 aa 

(mean = 10) (Figure S1E). The light chains were more biased to-

ward germ line, with 50.1% (486/969) of containing no muta-

tions, compared with 18.1% (175/969) for the heavy chains 

(Figure S1F). These results suggest that rather than simply 

using a single dominant heavy-light chain combination, MAGE 

is capable of generating diverse populations of antibody 

sequences.

We next sought to determine the novelty of generated anti-

bodies at an individual level. In an attempt to quantify this nov-

elty, each generated sequence was compared to all sequences 

seen during fine-tuning to identify the most similar training 

example, based on the minimum Levenshtein distance between 

each pair of sequences. This distance, which can be intuitively 

interpreted as the number of amino acid differences, was first 

calculated separately for the heavy and light chains (Figure 1E). 

We observed that the generated heavy chains contained more 

differences from training data sequences on average (mean = 

11.7 differences), compared with light chains, which exhibited 

substantially lower levels of differences (mean = 1.4 differences). 

When separated based on antibody sequence region, the dis-

tances to the nearest training sequence were highest in the 

CDR3s (Figure 1F), as could be expected due to the high diver-

sity in this region. Distances were higher for the heavy chains 

than light chains across all regions, aside from framework region

4 (FWR4). We also compared the similarity of generated heavy-

chain CDRH3s specifically to the training RBD sequences by 

finding the maximum sequence identity based on Levenshtein 

distance. The generated CDRH3s were largely novel, covering 

a range of identities centered at a mean of 72.4% sequence 

identity, with 7.4% of the generated antibodies containing 

CDRH3s identical to an antibody seen in training (Figure S1G). 

The distribution of similarity to training data based on both 

heavy- and light-chain distance and CDR3 identity was broad

(Figure S1H), suggesting that the generated antibody sequences 

cover a range of uniqueness with respect to sequences seen in 

training. Together, these results indicate that MAGE-generated 

sequences with differences in all regions of the antibody, rather 

than only designing CDRs.

Generated antibodies exhibit diverse binding profiles to 

SARS-CoV-2 RBD

Following basic filtering of the 1,000 generated antibody se-

quences, we used a simple pipeline to select antibodies for 

experimental validation of binding (Figure 2A). From the 969 anti-

body sequences that remained after filtering, 10 antibodies were 

first chosen in an unbiased manner, without comparison against 

RBD-specific antibodies. To test a diverse unbiased set, the 20 th 

and 80 th percentile of variable heavy (VH) germline identity anti-

bodies from sequences using the top 5 most frequently gener-

ated VH genes were selected. Another set of 10 antibodies 

was selected based on similarity to known RBD-specific anti-

bodies. For this biased selection, the top 5 antibodies with the 

highest CDRH3 identity to any CoV-AbDab antibody, and the 

top 5 antibodies with the highest VH identity to any CoV-

AbDab antibody, were chosen. In total, a set of 20 antibodies 

was selected for in vitro validation, containing a range of 

sequence characteristics and novelty that aimed to represent 

the distribution of generated sequences (Table S2). When 

compared to the most similar training antibody, the selected an-

tibodies ranged from a minimum VH distance of 3 residues 

(RBD-238) to 24 different residues (RBD-153) (Figure 2B). The 

respective light chains were more similar to those seen in 

training, with a minimum distance ranging from 0 residues 

(RBD-135) to 9 residues (RBD-727).

The 20 antibodies selected for experimental validation were 

tested for binding to RBD from the SARS-CoV-2 index strain 

by ELISA (enzyme-linked immunosorbent assay) (Figures 2C 

and S2A–S2D). From these results, 9/20 (45%) of the tested an-

tibodies were identified as binding hits for further characteriza-

tion, based on a minimum of 2-fold signal over background at 

the highest antibody concentration tested (10 μg/mL). In the 

biased-selection group, 2/5 of the CDRH3 matches (RBD-159, 

RBD-951) and 4/5 of the VH matches (RBD-238, RBD-409, 

RBD-413, and RBD-446) displayed binding by ELISA. In the un-

biased-selection group, 3/10 antibodies (RBD-61, RBD-404, and 

RBD-839) displayed binding, with RBD-839 displaying a strong 

binding signal, on par with the positive control antibody 

S309. 26 All of these binding antibodies show no detectable 

ELISA signal to BG505, an HIV-1 envelope trimer. While the bind-

ing antibodies generally exhibited lower minimum distances 

from both VH and VL (variable light) training sequences 

compared to the antibodies that showed no binding, the binding 

antibodies nevertheless exhibited substantial novelty, with a 

range of 5–25 (mean 13.6) total distance to closest training 

antibody (Figure 2D). In particular, RBD-839 showed a higher 

minimum distance from the nearest training antibody (total dis-

tance = 18 residues) than 67% of the non-binding antibodies 

(Figure 2D). We observed a wider range of VH distances to 

training data compared with VL, in alignment with the lower 

diversity of light chains we previously observed in the pool of 

generated antibodies and training data.
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Binding was further validated using biolayer interferometry 

(BLI) to measure association and dissociation kinetics for immu-

noglobulin G (IgG) binding to immobilized, monomeric SARS-

CoV-2 RBD (RBD-SD1) (Figures 2E and S2E). Apparent K D 
(K D1 ) values were determined by fitting the resulting binding 

curves to a 1:2 bivalent analyte model, 27 which accounts for

the slower observed dissociation rate due to avidity. Of the 

hits identified by ELISA, 8 of 9 demonstrated measurable binding 

to RBD-SD1, with no binding observed for RBD-404 at the 

highest concentration tested (1,024 nM). Four antibodies from 

the biased-selection groups (RBD-159, RBD-238, RBD-409, 

and RBD-951) and one from the unbiased-selection group

Figure 2. Twenty antibodies were selected for experimental validation of binding to RBD

(A) Schematic of antibody selection method after generation, yielding a total of 20 antibodies for experimental validation.

(B) For each antibody, the Levenshtein distance for the VH or VL is shown in comparison to the training antibody with the lowest total distance (summed across VH 

and VL). Antibodies are grouped by selection group.

(C) ELISA area under the curve (AUC) based on absorbance at 450 nm across a dilution series from 6.4 × 10 –4 to 10 μg/mL, with S309 (RBD-specific) positive 

control and VRC01 (HIV-1-specific) negative control antibodies.

(D) Relationship between the minimum VH and VLs distance from the closest training antibody sequences with points colored based on ELISA AUC. Overlapping 

points at VH distance = 4 and VL distance 5 are shown a single point, with split coloring based on AUCs of these two antibodies (RBD-446, RBD-413).

(E) BLI sensorgrams for binding of high-affinity IgG antibodies to immobilized SARS-CoV-2 RBD-SD1. Data (black) were fitted to a 1:2 bivalent analyte model. 

Curve fits are shown in red. More extensive kinetics are shown in Figures S2E–S2G.

See also Figure S2 and Table S2.
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(RBD-839) demonstrated apparent high-affinity binding, with 

K D1 values in the nanomolar to sub-nanomolar range. RBD-61, 

RBD-413, and RBD-446 also bound to RBD-SD1, albeit with 

reduced apparent affinity (Figure S2F). Although a small amount 

of non-specific binding was detected for one antibody (RBD-

951), for the other 7/8 antibodies no binding was observed by 

BLI to a prefusion-stabilized RSV F trimer (DS-Cav1 28 ), which 

is consistent with the specificity observed by ELISA (Figure S2G). 

Although Figure 2D shows that the antibody sequences are 

distinct from the training data, exhibiting a range of novelty, we 

sought to assess how similar the generated binding antibodies 

are at the population level. Public antibody clones, commonly 

defined by matching variable genes and CDR3 identity >70%, 

represent a set of criteria for grouping similar antibodies found 

in different individuals that are likely to share the same binding 

specificity. 29–31 When comparing the generated binding anti-

bodies to antibodies from the CoV-AbDab using this definition, 

we found a range of ‘‘publicness,’’ from zero public clones for 

RBD-61 and RBD-404 to the highly public RBD-238 with over 

100 public clones (Figure 3A). We observed that all generated 

binding antibodies had >70% CDRH3 identity with at least one 

CoV-AbDab antibody, which is not surprising given the vast di-

versity and size of the database. Some of these antibodies, e. 

g., RBD-951, shared sequence features with many training anti-

bodies at a population level, while others, e.g., RBD-61, ap-

peared much less public (Figure S3A). When comparing each 

generated binding antibody to its closest training match based 

on VH distance, we observed that the majority of differences 

were in the CDRH3, but almost all (8/9) of the binding antibodies 

contained at least one difference outside of the CDRH3 

(Figure 3B), demonstrating the ability of MAGE to generate 

distinct full variable sequences rather than only designing 

CDRs. In addition to varying levels of publicness and locations 

of mutations, we demonstrated that RBD-specific antibodies 

generated by MAGE have diverse sequence features including 

CDR lengths, variable gene usage, and humanness scores 

(Figure 3C).

Generated RBD antibodies bind full-length spike and 

neutralize SARS-CoV-2

The 9 binding antibodies to RBD were tested for binding to full-

length SARS-CoV2 spike (index), along SARS-CoV spike (SARS-

CoV-1) and the zoonotic Betacoronavirus Lyra-CoV. Although 

MAGE was prompted using RBD only, we wanted to interrogate 

whether the generated antibodies would be compatible with and 

bind full-length spike. Of the RBD-binding antibodies, 6/9 

showed binding to full-length spike in ELISA (Figure 3D), sug-

gesting that the subset of RBD-specific but non-spike-binding 

antibodies may bind epitopes that are occluded or bind in con-

formations that may be sterically hindered on the spike trimers. 

Two of these antibodies (RBD-951 and RBD-839) also displayed 

a weak signal to SARS-CoV-1 and Lyra-CoV spikes (Figure S3B). 

These results further emphasize that MAGE was able to generate 

antibodies with diverse characteristics and binding properties, 

exhibiting cross-reactivity to different coronavirus spike variants. 

Following validation of binding by ELISA, we aimed to deter-

mine whether the generated antibodies also exhibited virus 

neutralization in a pseudovirus assay. 31 Four of the RBD-binding

antibodies displayed neutralization against SARS-CoV-2 index 

pseudovirus, with RBD-409 displaying highly potent neutraliza-

tion (IC 50 = 6.7 ng/mL) (Figures 3E and S3C). Out of the 6 anti-

bodies that bound full spike in ELISA, all but one showed neutral-

ization potency of <1 μg/mL against at least one spike variant. 

None of these antibodies were able to neutralize XBB.1.5, 

although this was unseen in training as the newest RBD variant 

included in training was Omicron BA.5. Nevertheless, RBD-409 

displayed high neutralization potency against the SARS-CoV-2 

spike Gamma (IC 50 = 17 ng/mL) and Delta (IC 50 = 4.1 ng/mL) var-

iants and was able to retain neutralization against several Omi-

cron variants including BA.2, BA.2.75, and BJ.1 (Figure 3F).

MAGE is capable of generating functional antibodies 

against diverse targets with lower representation in the 

training datasets

While the training dataset used to fine-tune MAGE was highly 

biased toward coronavirus antibody-antigen pairs, the dataset 

did contain other diverse antigen specificities to enable genera-

tion against different prompts. To that end, antibodies were de-

signed and tested for binding against a newly emerging, highly 

pathogenic avian influenza virus 32 (H5) and the RSV-A glycopro-

tein prefusion F (RSV-A). For RSV-A, there were 292 training 

antibodies against the exact RSV F sequence used for prompt-

ing, along with 753 antibodies against related RSV antigens, 

including RSV-B and postfusion RSV F. Hence, the number of 

exact prompt training antibodies for RSV-A represented approx-

imately 1/10 of the size of the training antibodies for SARS-

CoV-2 RBD. In addition to validating antibody designs against 

a target with limited training data, we also sought to test the 

capability of MAGE to generate antibodies against a target not 

seen in training (zero-shot). Toward this goal, we prompted 

MAGE using HA from the avian influenza (H5N1 clade 2.3.4.4b 

virus), an emerging public health threat with multiple reported 

interspecies transmissions, including human infections. 32,33 

While this exact antigen sequence was not seen in training and 

was not even reported at the time of training MAGE, a total of 

472 H5N1-specific antibodies were included in training. These 

training antibodies were primarily specific to the HA variant 

A/Indonesia/05/2005, 16 which has 91.5% sequence identity to 

the more recent H5/TX/24 (A/Texas/37/2024) used for prompt-

ing. This target therefore represents a realistic use-case, where 

MAGE can generate antibodies against an emerging threat 

without pre-existing knowledge of binding antibodies for that 

specific target antigen sequence.

To explore the behavior of MAGE when prompted with 

different antigens, 1,000 sequences were generated against 

H5/TX/24 HA and RSV-A F. Notably, there was a significant 

enrichment of RSV-A and H5-specific clones (using same VH 

gene and 70% CDRH3 identity) generated when prompting 

with the respective antigens, as opposed to prompting with 

SARS-CoV-2 RBD (Figure 4A). Almost all the antigen-specific 

clones were distinct from sequences seen in the training data, 

and most contain mutations throughout the VH region in addition 

to differences within the CDRH3, suggesting that MAGE learns 

from the training data to generate an enrichment of distinct, 

prompt-specific antibody sequences. Further, each of the three 

prompts yielded antibody sequences with unique distributions of
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Figure 3. Generated RBD-binding antibodies have diverse sequence characteristics

(A) Publicness of binding antibodies based on CDRH3, VH, and both VH and VL. Clones defined as CDR3 identity >70% and matching V genes for the specified 

chain.

(B) Sum of edits within each VH region for binding antibodies compared to closest sequence match in training data.

(C) Table showing sequence characteristics of RBD-binding antibodies. OASis percentile represents a humanness score averaged across the heavy and light 

chains. Strong affinity binding antibodies are bolded.

(D) ELISA AUC for binding curve dilutions for SARS-CoV-2 WT (wild type) and other coronavirus spike variants for RBD-binding antibodies. Full ELISA dilution 

curves for all spike variants are shown in Figure S3B.

E) IC 50 values for pseudovirus neutralization of SARS-CoV-2 variants for full spike binding antibodies. Gray boxes represent strains which were not tested due to 

the weak neutralization of these antibodies against the index strain.

(F) Full pseudovirus neutralization dilution curves for RBD-409 against SARS-CoV-2 variants. Data represent the percentage of neutralization as mean ± SD of two 

technical duplicates. Neutralization curves for all spike variants are shown in Figure S3C.

See also Figure S3.
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VH gene usage, with antibodies generated with the SARS-CoV-2 

RBD prompt most frequently using IGHV3-53/66, in alignment 

with reported gene usage biases in SARS-CoV-2-specific reper-

toires, 34 while RSV-A sequences heavily biased toward IGHV1-

18 and H5 sequences toward IGHV4-34 (Figure 4B). The anti-

body sequences generated against each prompt were then 

compared to the training data to find the minimum Levenshtein 

distance for each heavy and light chain, indicating that H5-

and RSV-A-prompted antibodies were more novel, on average, 

than the RBD-prompted antibodies (Figures 4C and 4D). Addi-

tionally, we found that the H5- and RSV-A-prompted sequences 

exhibit higher levels of somatic hypermutation (SHM) than the 

RBD-prompted antibodies (Figures 4E and 4F).

We next sought to experimentally validate the binding speci-

ficity for a subset of these generated sequences against the 

H5 and RSV-A prompts. For H5, we compared the generated se-

quences to H5 training antibodies and selected a validation set 

of 18 designed sequences for experimental validation, aiming 

to capture a range of novelty compared with the training exam-

ples seen (see STAR Methods section ‘‘Antibody selection for 

experimental validation of H5N1 antibodies’’; Table S2). We 

confirmed strong binding by ELISA for 5/18 (28%) of these de-

signs (Figure 5A), along with another seven weak binding anti-

bodies (>2-fold signal over background and >0.5 absorbance) 

at 10 μg/mL ELISA (Figures S4A and S4B). The minimum dis-

tance to training antibodies for the binding antibodies ranged 

from 4–16 residues for the heavy chain, and 1–8 residues for 

the light chain (Figure 5B). The levels of SHM ranged from 6%– 

11% for the heavy chain, and 7%–8% for the light chain 

(Figure 5C). Similarly to the antibodies designed against RBD,

novel residues in these H5-prompted antibodies were found 

across the entire VH region (Figure 5D) and were not limited to 

the CDRs. Notably, all 5 of the strong H5-binding antibodies 

were neutralizing against the influenza prompt strain A/Texas/ 

37/2024 with IC 50 < 1 μg/mL (Figure 5E). Additionally, these an-

tibodies were tested against a broader panel and showed 

diverse neutralization patterns against H1 and H5 variants 

(Figure 5F).

For the RSV-A prompt, we generated a larger pool of 10,000 an-

tibodies, followed by selection for validation of biased and unbi-

ased selections, using a similar stratification method as used 

for RBD (see STAR Methods section ‘‘Antibody selection for 

experimental validation of RSV antibodies’’), yielding a set of 23 

antibodies for experimental validation of binding (Table S2). 

Following initial screening (Figures S4C and S4D), we confirmed 

binding by ELISA for 7/23 (30%) of these designs, including 3 

antibodies that were selected without biasing toward known 

RSV-specific antibodies (Figure 6A). While the 7 binding anti-

bodies had at least one heavy-chain clone in the training data 

(>70% CDRH3 identity, same VH gene), they nevertheless 

included many variations throughout the heavy and light chains, 

ranging from a minimum heavy-chain distance of six residues 

for RSV-6479 to 21 residues for RSV-2954 (Figure 6B). In the light 

chain, the distances compared to training sequences range 

from 4 for RSV-4314 to 12 for RSV-3301. The MAGE-designed 

RSV-binding antibodies show SHM levels ranging from 3%– 

21% for the heavy-chain, and 2%–12% for the light-chain 

variable region (Figure 6C), suggesting that MAGE does not sim-

ply learn germ line-level antibody sequences. Compared to the 

closest training antibodies, we see that the RSV-binding

Figure 4. Characteristics of sequences generated against RSV and H5/TX/24 prompts

(A) Log fold changes showing increase in same antigen-specificity clones for RSV-A and H5/TX/24 prompts compared to WT RBD prompt. Calculated based on 

number of clones between generated and training antibodies, out of 1,000 generated sequences.

(B) Heatmap showing percent of 1,000 generated antibody-encoding different variable genes for each antigen prompt.

(C–F) For 1,000 generated antibodies against each prompt, the distribution of (C) minimum VH Levenshtein distance to any training antibody, (D) minimum VL 

Levenshtein distance to any training antibody, (E) percent identity to VH germ line, and (F) percent identity to VL germ line.
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antibodies include a range of differences across the VH regions, 

including differences in at least 4/7 regions for all seven binding 

antibodies (Figure 6D). There was also a range of novelty for the 

light chains in this set of antibodies, with the minimum VL distance 

to training antibodies ranging from 4–12 residues. The binding an-

tibodies were further characterized by pseudovirus neutralization 

assays (Figures 6E and S4E). Notably, 3/7 of the binding anti-

bodies were able to strongly neutralize RSV-A (Figure 6E), with 

RSV-4314 and RSV-2245 showing potent neutralization 

(IC 50 < 0.1 μg/mL). Notably, RSV-2245 was from the unbiased-se-

lection group, with a VH distance of 17 aa to the closest training 

antibody and a SHM level of 10%, representing a highly mutated 

antibody with a notably distinct sequence. The unbiased antibody 

RSV-3301 also displayed some, albeit weak, neutralization.

To investigate the epitopes targeted by MAGE-generated an-

tibodies from the unbiased-selection group with both high levels 

of SHM and high distances from training, we determined a cryo-

EM structure of RSV prefusion F (PR-DM 36 ) bound to fragments 

of antigen binding (Fabs) for RSV-2245 and RSV-3301 (Figures 

7A and S7). For this complex, 140,634 particles were extracted

from 1,323 micrographs to generate a 3.4-A ˚ resolution recon-

struction with 3 copies of each Fab bound to the RSV F trimer.

The structure revealed that RSV-2245 binds to an epitope pri-

marily within prefusion-specific antigenic site V, burying 850 A ˚ 2

on a single F protomer. Antibodies that target site V are common 

in the human repertoire and tend to be potently neutralizing, 11 

consistent with the neutralization efficacy we observed for 

RSV-2245. RSV preF is contacted by all three CDRs of the 

RSV-2245 heavy chain and CDRs 1 and 2 of the light chain 

(Figures 7B and 7C). The interface is centered on the strands 

of the β3–β4 hairpin, with a large network of hydrophobic con-

tacts mediated by CDRH3 and Tyr53 of CDRH2. The sidechain 

of Tyr53 CDRH2 additionally contacts a single residue within β2, 

forming a hydrogen bond with the sidechain of Tyr53 F . The 

RSV-2245 light chain contributes additional interactions within 

β4 and with residues that flank the β3–β4 hairpin. Of note, 

Asp30 CDRL1 , which is mutated from asparagine in the germline 

sequence, forms a salt bridge with the Lys192 F sidechain. This 

mutation was only observed in 1/292 (0.34%) of the training 

RSV-specific antibodies, with the corresponding training anti-

body showing low similarity (73% LCDR1 identity and only 

50% CDRH3 identity), demonstrating the ability of the model to 

learn sequence features from individual training sequences 

and integrate them into novel antibodies. The RSV-2245 epitope

Figure 5. MAGE generates novel A/Texas/37/2024 H5-binding antibodies

(A) Full ELISA dilution curves for designed antibodies against H5/TX/24 hemagglutinin. Data are represented as means ± SDs.

(B) Minimum distance to training antibody sequences. Distance represents number of residues different when compared to the heavy- and light-chain sequences 

from the training match with the lowest total distance (VH + VL).

(C) Percent somatic hypermutation in heavy and light chain for binding antibodies, calculated across VH and VL genes.

(D) Edit distance by VH region to closest training sequence match from (C).

(E) Neutralization dilution curves for MAGE antibodies against H5/TX/24 hemagglutinin, with stem-binding antibodies CR9114 and MEDI8852 included as positive 

controls. Data are represented as means ± SDs.

(F) IC 50 values for neutralization curves against different hemagglutinin strains. Full curves for neutralization breadth panel provided in Figure S4E.

See also Figures S4 and S6 and Table S2.
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further extends to include residues within antigenic site II, medi-

ated by polar contacts between CDRH2 and the helix-turn-helix 

formed by the α6 and α7 helices.

RSV-3301 represents the most highly mutated antibody of the 

validated RSV-specific set. The structure revealed that RSV-

3301 buries approximately 715 A ˚ 2 within the membrane-proximal

lobe of one F protomer, targeting an epitope that lies almost 

entirely within antigenic site I. This site is typically considered to 

be postfusion F-specific but is largely conserved in both pre-

and postfusion conformations. 37–39 The interaction is dominated 

by CDRH3, which extends into the cavity formed between the α8 

helix and the curved β-sheet formed in part by β10, β9, β7, and 

β2 (Figures 7D and 7E). Backbone atoms within Asp99 CDRH3 and 

Arg100 CDRH3 form hydrogen bonds with the sidechains of 

Asn380 F and Asp344 F , respectively, bridging α8 and β9. Notably, 

Arg100 CDRH3 was observed in training antibodies but was not 

found in the most similar training antibody (VH distance = 12), 

despite having a highly similar CDRH3 (94.4% identity). CDRH1 

and CDRH2 make polar and hydrophobic contacts within and 

proximal to the α8 helix, including two salt bridges formed between 

Arg32 CDRH1 and Glu378 F and Asp58 CDRH2 and Lys390 F . The RSV-

3301 light chain also buries surface area on F between α8 and β2,

primarily through hydrophobic contacts mediated by Tyr32 CDRL1 

and Tyr92 CDRL3 . Additionally, CDRL1 and LFR3 contact residues 

within β22, extending the RSV-3301 epitope into antigenic site IV. 

Together, the structural characterization of these two anti-

bodies demonstrates that MAGE generates antibodies with 

diverse binding properties. Not only do RSV-2245 and RSV-

3301 target different binding sites of the RSV-A F protein, but 

these two antibodies display different binding properties. RSV-

2245 contains binding residues distributed across both the heavy 

and light chains, whereas RSV-3301 binding is dominated by in-

teractions within CDRH3. Although both antibodies contained 

MAGE-generated mutations in key binding residues, there were 

many mutations introduced into framework regions that did not 

interface with the antigen surface. To test the impact of these 

non-germline mutations, we reverted the VH genes to germ line 

and tested for binding by ELISA, with the germline-reverted 

RSV-3301 showing substantial reduction in binding by ELISA, 

while germline-reverted RSV-2245 retained comparable binding 

to its fully mutated form (Figures S5A and S5B). Further, BLI 

was used to characterize the binding of RSV-2245 Fab and 

RSV-3301 Fab to immobilized RSV-A F (Figures S5C and S5D). 

For RSV-2245, a 1:1 binding model was used to determine

Figure 6. MAGE generates novel RSV-A binding antibodies

(A) Full ELISA dilution curves for designed antibodies against RSV-A prefusion using potently neutralizing antibody 5–1 35 as a positive control. Data are rep-

resented as means ± SDs.

(B) Minimum distance to training antibody sequences. Distance represents number of residues different when compared to the heavy- and light-chain sequences 

from the training match with the lowest total distance (VH + VL).

(C) Percent somatic hypermutation in heavy and light chain for binding antibodies, calculated across VH and VL genes.

(D) Distance by VH region to closest training sequence match.

(E) RSV-A neutralization dilution curves for binding antibodies against RSV-A, with IC 50 (μg/mL) calculated from the dose-response curve. For neutralization 

curves, data are represented as means ± SDs.

See also Figures S4–S6 and Table S2.
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binding affinity (K D = 1.5 × 10 − 7 M). Due to suspected heteroge-

neity in the epitope targeted by RSV-3301, these data were fitted 

to a heterogeneous ligand model to determine two K D values 

(K D1 = 6.7 × 10 − 6 M and K D2 = 4.5 × 10 − 9 M). Together, these re-

sults show that MAGE can generate antibodies with a variety of 

SHM changes in different regions of the antibody sequence and 

with differing impacts on antigen recognition and binding affinity.

MAGE generates somatic hypermutation changes 

outside of consensus mutations observed in training 

data

Generative AI models learn patterns from example sequences 

seen during training, enabling the trained models to sample 

from learned distributions during sequence generation. While 

the aim of PLMs is typically to generate novel sequences, these 

models can reproduce common sequence features and biases 

seen in training. 40 In order to interrogate such biases in MAGE, 

generated sequences were aligned to consensus sequences 

constructed from the training data for each antigen target 

(Figures S5E–S5G). The training antibodies were grouped by 

heavy variable gene and target-specificity, then aligned using 

IMGT numbering. From this alignment, a consensus, or average, 

sequence was constructed by taking the most common residue 

at each position. Due to the high variability of the CDR3 region, 

this alignment was limited to the VH region consisting of frame-

work regions 1–3 and CDRs 1 and 2. For all three targets, even 

though there was a population of antibodies generated with high 

similarity to these consensus sequences, we also observed a 

range of differences from consensus as high as 19 for RBD anti-

bodies, 20 for H5 antibodies, and >40 for RSV-A antibodies

(Figure S5E). While generated sequences at the higher end of 

these distributions have not been tested, we note that validated 

binding antibodies against all three targets contain examples 

with a distance from consensus ≥10 differences in the VH region. 

For MAGE antibodies H5-384 and RSV-3301, we show a more 

detailed breakdown of this comparison, including any residues in 

the VH region that are distinct from either the training consensus 

or germline sequences. For H5-384 (Figure S5F), the most 

potently neutralizing H5-specific antibody, there were 9 residues 

different from the consensus alignment for H5N1-specific 

IGHV4-34 antibodies seen in training (n = 51) and 7 mutations 

from germ line. For RSV-3301 (Figure S5G), the most highly 

mutated RSV binder, there were 11 residues different from 

consensus for RSV-specific IGHV2-5 training antibodies 

(n = 16) and 18 mutations from germ line. Notably, 10 of these 

residues were different from both the consensus and germline 

sequences. These comparisons to the consensus training se-

quences suggest that MAGE is capable of generating functional 

antibody sequences with residues outside of the ‘‘average’’ of 

antibodies observed in training.

MAGE antibodies are predicted to have clinically 

relevant developability profiles

Further applications of MAGE to develop clinically relevant 

monoclonal antibodies will require the generation of antibodies 

with desirable developability profiles. To assess the MAGE 

antibodies presented here, the in silico therapeutic antibody 

profiler (TAP) tool was used to score developability risk 

profiles compared to post Phase-I clinical-stage therapeutic an-

tibodies. 41 TAP calculates five metrics: total CDR length,

Figure 7. Cryo-EM structure of Fabs RSV-2245 and RSV-3301 bound to RSV-A F

(A–E) (A) Overview of 3.4-A ˚ resolution cryo-EM structure of RSV F bound to fragments of antigen binding (Fabs) for RSV-2245 (heavy and light chains in dark and 

light blue, respectively) and RSV-3301 (heavy and light chains in dark and light green, respectively). RSV-A F protomers are shown in shades of pink. Zoomed-in 

views of the Fab-RSV F interface are shown as cartoons with select residues represented as sticks for (B) RSV-2245 heavy chain, (C) RSV-2245 light chain, (D) 

RSV-3301 heavy chain, and (E) RSV-3301 light chain. Hydrogen bonds are shown as dashed blue lines.

Details for cryo-EM data processing and structure validation are shown in Figure S7.
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patches of surface hydrophobicity, patches of positive charge, 

patches of negative charge, and structural Fv charge symmetry 

parameter, along with recommended thresholds based on per-

centiles of these metrics for the clinical-stage antibody dataset. 

In Figure S5H, each of the binding antibodies designed by 

MAGE, across all three prompt groups, are shown in relation to 

the therapeutic distributions for each of the TAP metrics. None 

of the validated MAGE antibodies exceeded Red Flag (high 

risk) thresholds, suggesting that these antibodies all fall within 

the distribution of clinical-stage therapeutic antibodies for these 

metrics. Three antibodies from each of the prompt groups score 

within the Amber Flag (medium risk) regions for at least one 

metric, with the most common risk being an unusually long total 

CDR length. Three of the MAGE antibodies could not be scored 

using TAP as ABodyBuilder2 failed to predict structures for these 

antibodies. While further experimental characterization would be 

needed for therapeutic development, these predictions suggest 

that MAGE is capable of generating antibodies with clinically 

relevant developability profiles.

DISCUSSION

In this work, we aimed to develop a purely sequence-based 

model capable of generating paired heavy-light-chain antibody 

sequences with prompt-specific binding. Once trained, the 

MAGE model presented here requires no template antibody or 

protein structural information. When prompted with an antigen 

amino acid sequence, MAGE produces full human VH and VL 

chains, including novel designs with changes from germline 

sequence introduced throughout the entire variable sequences. 

Our results confirm that generative PLM models like MAGE are 

capable of the complex task of generating full paired heavy-

and light-chain antibody sequences, demonstrating validated 

binding against RBD, H5 HA, and RSV-A prefusion F. MAGE-

generated antibodies show diverse sequence characteristics 

and binding properties, including potent neutralization for a sub-

set of the binding antibodies designed against each antigen. 

While MAGE is not conditioned on neutralization, this demon-

strates the functionality of these antibodies, and validates the 

ability of MAGE to produce useful, clinically relevant antibodies 

in the context of therapeutic discovery. For RBD and RSV-A, a 

subset of validated, target-specific designs were selected with 

no bias toward known antibodies, demonstrating design of 

potently neutralizing antibodies without the need for a starting 

template antibody sequence or structure. The design of neutral-

izing antibodies against H5/TX/24 HA demonstrates zero-shot 

learning capabilities, where MAGE was able to generate anti-

bodies against an unseen influenza strain, by training on previ-

ously characterized antibodies with specificity against a related 

but divergent H5N1 strain. This demonstrates a realistic use-

case for this approach, where MAGE could be used to generate 

antibodies against an emerging health threat more rapidly than 

traditional antibody discovery methods that would rely on ac-

cess to specialized biological materials (e.g., blood samples or 

antigen protein).

The antibodies designed and characterized here display a 

range of sequence characteristics, including differential gene us-

age, CDR properties, and levels of SHM. While a subset of the

validated binding antibodies have CDRH3s that are similar to 

those seen in training, it is well-established that individual amino 

acid substitutions can disrupt antibody-antigen binding, 42,43 

even within non-interfacing framework regions. 44,45 As such, 

the ability of the model presented here to generate binding— 

and in some cases potently neutralizing—antibody sequences 

highlights the utility of generative algorithms in creating solutions 

that differ from those seen in the training data, while retaining 

antibody-antigen recognition properties. In addition to designs 

with low numbers of edits introduced to training antibodies, we 

also validated binding for more novel antibodies with >20 total 

amino acid differences to the most similar training examples 

(RSV-2245 and RSV-3301). Structural characterization of these 

antibodies showed that they target different sites on RSV F 

with different modes of binding, which utilize residues not found 

in the closest training antibody matches. Additionally, the site I 

epitope targeted by RSV-3301 is not well-characterized and, to 

our knowledge, this is the first structure showing a human anti-

body targeting this epitope in prefusion F. 46

In this work, MAGE was validated against viral antigen targets 

as a proof of concept. However, data generation methods are 

constantly improving, and large-scale efforts using high-

throughput methods such as LIBRA-seq could soon yield data-

sets of sufficient scale for training such models to efficiently 

generate antibodies against diverse antigen targets beyond 

what is included in the training datasets. The development of 

these datasets, along with the subsequent experimental valida-

tion of generated antibodies that can be incorporated into 

training data, will enable iterative improvement of MAGE. Since 

applications of LLMs in other fields have shown evidence of 

generalization, 47–49 we anticipate that, provided enough data, 

models such as MAGE could be capable of learning the more 

general rules of residue-level interactions that govern antibody-

antigen binding, with the capability to generate antibodies 

against completely unseen targets. Such approaches will have 

the potential to revolutionize the field of antibody discovery, 

but the generalizability of such models is yet to be proven in 

this context.

Limitations of the study

A limitation of the sequence-based approach presented in this 

work is the lack of functional data incorporated into data engi-

neering and training. Antibody-antigen pairs were curated in a 

binary manner based on database annotations, binding predic-

tions (from LIBRA-seq data), and experimental data when avail-

able (Table S1). As a result, the scope of MAGE is limited to the 

generation of antibodies that bind specifically to a target of inter-

est. Currently, the model is not capable of explicitly targeting the 

generation of antibodies with high binding affinity or potent 

neutralization. While we showed that generated antibodies can 

achieve such functions, the generation of desired functional 

qualities is currently limited by candidate selection and is not 

guaranteed. The application of sequence-based models such 

as MAGE to specific targets of interest can be tailored further 

through the incorporation of structure and epitope or paratope 

information.

We emphasize that rather than aiming to redesign antibodies, 

MAGE is able to sample the distribution of known binding
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sequences to learn complex sequence features associated with 

antigen-binding specificity, and then generate a pool of diverse 

sequences that is highly enriched for binding antibodies, 

providing candidates for further characterization, down-selec-

tion, and development. However, it is of interest to determine 

whether MAGE antibodies demonstrate functional properties 

comparable to the training antibodies. For 5/7 of the RSV-binding 

antibodies designed by MAGE, we observed neutralization pat-

terns similar to those of the closest training matches based on 

CDRH3 identity, albeit in some cases the closest antibodies 

from training were more potent. The closest antibodies for 

two of the non-neutralizing MAGE antibodies (RSV-6966 and 

RSV-2397) show potent neutralization (IC 50 < 0.1 μg/mL) 

(Figures S6A–S6C). This comparison was also performed for 

H5-specific MAGE antibodies (Figures S6D and S6E). Here, we 

observed that MAGE antibody H2-739 demonstrated increased 

neutralization specificity against H5 variants over other HA sub-

types (H1 and H2) compared to its training match, which had 

increased neutralization breadth. H5-242 showed broader 

neutralization than its training match, along with increased po-

tency against the prompt strain of H5/TX/24. These results sug-

gest that MAGE can generate neutralizing antibodies that have 

diverse phenotypes that are distinct from those observed in the 

training data. We note that, in this study, we have only sampled 

a fraction of the MAGE-generated antibody sequence space for 

experimental validation but envision that this candidate pool 

could be further mined to find antibodies with improved func-

tional properties Figure S7.

Extensive validation of MAGE designs, especially against tar-

gets with lower or no representation in the training data, is limited 

due to challenges related to large-scale expression, purification, 

and validation of antibody sequences. While we have shown that 

clustering and random sampling of generated sequences is suf-

ficient to yield binding antibodies from small batches of designs 

against targets highly represented in the training data, we have 

not validated this capability in the context of novel, or unseen, 

targets and expect that success rates would be much lower 

for such cases. Even though the model presented here is 

currently limited by the need for further candidate down-selec-

tion, either through comparison of generated sequences to 

known antibodies or through the use of downstream predictive 

models, we anticipate that the capacity for such applications 

will be enabled by the incorporation of larger training datasets 

as libraries of antigen-specific antibody species continue 

to grow.
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STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Goat anti-human IgG-HRP Thermo Fisher Cat # A18817; RRID: AB_2535594

Mouse anti-RSV F (MCA490) Bio-Rad Cat# MCA490; RRID:AB_2231368

S309 PMID: 32422645 PBD: 6WS6

VRC01 BEI Resources ARP-12033; RRID: AB_2491019

CR9114 PMID: 22878502 GenBank: JX213639, JX213640

MEDI8852 PMID: 27453466 RRID: AB_3111586

5-1 Abu-Shmais et al. 35 N/A

APC-Cy7 Mouse Anti-Human CD14 BD Cat# 561709; RRID: AB_10893806

FITC Anti-Human CD3 (OKT3) Tonbo Biosciences Cat# 35–0037; RRID: AB_2621662

BV711 Mouse Anti-Human CD19 BD Cat# 563036; RRID: AB_2737968

PE-Cy5 Mouse Anti-Human IgG BD Cat# 551497; RRID: AB_394220

Bacterial and virus strains

RSV A2 strain BEI Resources NR-52018

SARS-CoV-2 index pseudovirus Daniel Sheward N/A

SARS-CoV-1 pseudovirus Daniel Sheward N/A

SARS-CoV-2 Delta pseudotyped lentivirus Daniel Sheward N/A

SARS-CoV-2 Gamma pseudotyped lentivirus Daniel Sheward N/A

SARS-CoV-2 BA.2.75.2 pseudotyped lentivirus Daniel Sheward N/A

SARS-CoV-2 B.1 pseudotyped lentivirus Daniel Sheward N/A

SARS-CoV-2 BJ.1 pseudotyped lentivirus Daniel Sheward N/A

SARS-CoV-2 BA.2 pseudotyped lentivirus Daniel Sheward N/A

SARS-CoV-2 BA.5 pseudotyped lentivirus Daniel Sheward N/A

SARS-CoV-2 BQ.1.1 pseudotyped lentivirus Daniel Sheward N/A

SARS-CoV-2 JN.1 pseudotyped lentivirus Daniel Sheward N/A

SARS-CoV-2 XBB.1.5 pseudotyped lentivirus Daniel Sheward N/A

H5N1 A/Texas/37/2024 Rebecca A. Gillespie N/A

H5N1 A/Vietnam/1203/2004 Rebecca A. Gillespie N/A

H1N1 A/Michigan/45/2015 Rebecca A. Gillespie N/A

H5N1 A/Cambodia/2023 Rebecca A. Gillespie N/A

H5N2 A/Mexico/2024 Rebecca A. Gillespie N/A

H2N2 A/Singapore/1/57 Rebecca A. Gillespie N/A

Biological samples

Human PBMCs (healthy) StemCell Technologies Cat# 70025

Human PBMCs (HIV-1+) Mark Connors N/A

Human PBMCs (COVID-19 convalescent) Helen Chu N/A

Human PBMCs (Influenza vaccinated) Ted Ross N/A

Chemicals, peptides, and recombinant proteins

Polyethyleniminine Linear MW 25000 Polysciences Cat#23966-1

1-Step Ultra TMB-ELISA Substrate Solution Thermo Fisher Cat#34029

Pluronic Acid F-68 Fisher Cat# 24040-032

Bovine serum albumin (BSA) Sigma-Aldrich A1470

Ghost dye red 780 Tonbo biosciences Cat#13-0865

4 mM L-glutamine Fisher Cat# 25030-081

Protein A resin GenScript Cat#L00210

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Lyra-CoV Spike Wall et al. 31 N/A

SARS-CoV-2 Index RBD Sino Biological Cat# 40592-VNAH

SARS-CoV-2 HexaPro Index Spike PMID: 32703906 N/A

SARS-CoV-1 S Jason McLellan N/A

HCoV-OC43 S Jason McLellan N/A

HCoV-HKU1-S-2P PMID: 28807998 N/A

RSV A2 DS-Cav1 prefusion F Jason McLellan N/A

RSV B9320 DS-Cav1 prefusion F Jason McLellan N/A

RSV post-fusion Jason McLellan N/A

hMPV F A1(NL/1/00) Jason McLellan N/A

hMPV F B2(TN99-419) Jason McLellan N/A

hMPV A postfusion F Jason McLellan N/A

Parainfluenza virus type 3 prefusion 

stabilized F ectodomain

PMID: 30420505 PDB: 6MJZ

H5/TX/24 hemagglutinin Genscript GenBank PP577943.1

H3 HK68 Masaru Kanekiyo N/A

H3 Perth19 Masaru Kanekiyo N/A

H1 MI15 Masaru Kanekiyo N/A

H1 NC99 Masaru Kanekiyo N/A

B2 SG57 Masaru Kanekiyo N/A

HA B/Wash/19 Masaru Kanekiyo N/A

H5 VN04 Masaru Kanekiyo N/A

H5 IN05 Masaru Kanekiyo N/A

H7 Anh13 Masaru Kanekiyo N/A

H5 HK09 Masaru Kanekiyo N/A

H10 JD13 Masaru Kanekiyo N/A

HIV-1 gp140 SOSIP BG505 Ivelin Georgiev N/A

HIV-1 ZM197 env Ivelin Georgiev N/A

HIV-1 B4.1 env Ivelin Georgiev N/A

Norovirus CHDC P domain Grant Hansman N/A

Norovirus SYD_2012 P domain Grant Hansman N/A

Norovirus GII.17 P domain Grant Hansman N/A

Critical commercial assays

B cell Single Cell V(D)J solution 10X Genomics N/A

ExpiFectamine™ 293 Transfection Kit Thermo Fisher Cat #A14526

EZ-link Sulfo-NHS-Biotin No-Weigh Thermo Fisher Cat #A39258

Solulink protein-oligonucleotide conjugation kit TriLink Biotechnologies Cat#S-9011

Plasmid Kits for Plasmid DNA Extraction QIAGEN Cat#12165

StrepTrap XT prepacked chromatography column Cytiva Cat#29401322

Deposited data

Raw next-generation sequencing data This paper SRA: PRJNA1321287

Cryo-EM structure RSV-3301 and RSV-2245 fabs 

bound to RSV-A F

This paper PDB: 9MKN, EMDB: EMD-48331

Experimental models: Cell lines

Human: Expi293F cells Thermo Fisher Cat#A14527

HEK293T ATCC CRL-3216

Vero cells ATCC CCL-81

E. coli DH5α Cell Culture Core N/A
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines used in this study include Expi293F (Thermo Fisher), HEK293T (ATCC), and Vero cells (ATCC). Bacterial strains used include 

E. coli DH5α (Thermo Fisher). Cells were maintained at 37 ◦ C and authenticated by the vendors. All cells were regularly tested for my-

coplasma contamination and confirmed negative.

METHOD DETAILS

MAGE model development

Database curation

The training database used to finetune MAGE for antibody generation consisted of paired human antibody sequences with cognate 

antigen sequences curated based on known antigen specificities. These sequence pairs were curated from public databases and 

literature, primarily the CoV-AbDab, PlAbDab, and SabDab. 8–10 For the PlAbDab, due to vague antigen labels (e.g. ‘‘flu’’), sequences 

were manually curated from referenced literature. 11,15–18,51,52 Sequences were also sources from previously published LIBRA-seq 

datasets 19,20,22,23 and other recent literature. 14,21 For all training sequences, heavy and light chains less than 100 amino acid residues 

in length were removed. When not provided by sources, antigens sequences were obtained from Uniprot. 53 For all antigen se-

quences, signal peptides were removed using SignalP 6.0. 54 See provided Python scripts and Table S1 for further details on filtering 

and thresholds applied for individual data sources, along with counts for antigen-specificities and sources included in training. 

Fine-tuning

The pretrained general protein model Progen2-base was fine-tuned for the task of generating paired heavy and light chain antibody 

sequences in response to an antigen prompt. This was achieved by autoregressive finetuning of Progen2-base’s 764 million param-

eters on sequences consisting of paired heavy and light chain antibodies and their cognate antigens. For each training example, 

these sequences were input to the model as a single concatenated vector with separation tokens between each sequence: 

<|bos> [Input antigen sequence] [SEP] [heavy chain sequence] [LC] [light chain sequence] <|eos|>

with two new special tokens, ‘[SEP]’ and ‘[LC]’ added to the Progen2 tokenizer. The training loss dropped rapidly in less than a 

single epoch (Figure S1C), demonstrating the ability of the pretrained model to quickly adapt to the new task and prompt format. 

During training, 10% of the data was held-out for evaluation during training to monitor overfitting and generalization. Fine-tuning

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

Oligonucleotides for protein DNA-barcoding Setliff et al. 19 N/A

Software and algorithms

Cell Ranger 10X Genomics https://support.10xgenomics.com/single-cell-

gene-expression/software/downloads/latest

HighV-Quest Brochet et al. 50 https://www.imgt.org/HighV-QUEST/.

GraphPad Prism 9.5.0 https://www.graphpad.com/ N/A

Octet Data Analysis Software v11.1 N/A N/A

cryoSPARC v4.6.0 N/A N/A

DeepEMhancer N/A N/A

AlphaFold 3 N/A N/A

Phenix v1.21.2 N/A N/A

Coot v0.9.2 N/A N/A

ISOLDE v1.8 N/A N/A

GraphPad Prism v10.1.0 https://www.graphpad.com/ N/A

ANARCI N/A N/A

BioPhi OASis N/A N/A

SignalP v6.0 N/A N/A

Flowjo v10 TreeStar https://www.flowjo.com/

Other

Python scripts for antibody generation and analysis This paper https://github.com/IGlab-VUMC/MAGE_ab_

generation

Finetuned model weights This paper https://huggingface.co/perrywasdin/MAGE_V1
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was performed using HuggingFace 55 Trainer for causal language modeling, with the Adam optimizer. The loss function was modified 

to mask the antigen sequence so that the mean negative loglikelihood loss was calculated across the antibody sequence only during 

training (excluding the antigen sequence and [SEP]). Loss was calculated after each step in training, while evaluation loss and accu-

racy were calculated every 500 steps using the evaluation data, for a total of 5 epochs (10,415 training steps). A learning rate of 1x10 -5 

was used with the default linear learning rate scheduler in HuggingFace. A training batch size of 8 was used, distributed across 4 

Tesla V100 GPUs.

Antibody generation and basic filtering

Based on the minimum evaluation loss, antibodies were generated using the model checkpoint saved after epoch 4. For generation of 

antibodies against an antigen target, the fine-tuned model was prompted with the entire antigen amino acid sequence using a prob-

ability threshold of 0.9 and a temperature of 1. The maximum sequence length was limited to the length of the input antigen sequence 

plus 250, allowing for a total length of 250 for the combined heavy and light chain. This length limit was not necessary for the model to 

generate quality antibody sequences, as multiple pad tokens were always generated following the end of the light chain sequence. In 

alignment with the format of the training data, the generated sequences were in the format:

<|bos> [Input antigen sequence] [SEP] [heavy chain sequence] [LC] [light chain sequence] <|pad|> n . <|eos|>

In order to separate out the generated antibody chains without introducing bias, the chains were simply selecting by splitting the 

string at the ‘[SEP]’ and ‘[LC]’ tokens, then truncating the light chain at the appearance of the first pad token (<|pad|>). Since the 

maximum length allowed for generation was 250 residues, most sequences contained extra pad tokens at the end of the sequences 

following the light chain, which were removed.

Following selection of the generated heavy and light variable regions, the antibody sequences were annotated using ANARCI 56 

with IMGT 24 numbering. If a sequence had either a heavy or light chain that was not recognized as a human variable chain by 

ANARCI, it was discarded, along with any sequences missing framework or CDR regions following alignment. Heavy chains or light 

chains shorter than 100 amino acids were also discarded, although few sequences under these lengths survived the previous filtering 

steps. Heavy chains which were identical to a training example were discarded, although there was only one occurrence of this in the 

sequences generated against SARS-CoV-2 RBD. Finally, antibodies were assessed for mutational load based on identity to germline 

variable genes, and humanness using the BioPhi OASis software.

Perplexity was calculated by performing a backward pass through the trained model, with the model in evaluation mode, to calcu-

late the exponential of the average negative log-likelihood for each generated sequence.

Antibody selection for experimental validation

For antibodies generated by prompting with SARS-CoV-2 RBD, additional criteria were applied to select candidates for experimental 

validation. For the heavy variable gene, only sequences with >85% identity were retained. For humanness, sequences below 70 th percen-

tile were discarded based on the recommended threshold for OASis. 25 In order to test novel sequences generated by the model, anti-

bodies with a CDRH3 identical to any training example (n = 72), or a VH germline identity of 100% (n = 175) were removed, leaving a se-

lection pool of 732 antibodies. In addition, any sequences with both >90% VH identity and >90% CDRH3 identity to CoV-AbDab RBD 

binding antibody sequences were removed. Following these filtering steps, the following automated selected pipeline was applied:

• From the top 5 most frequently generated VH genes, select sequences with 20th and 80th percentile VH identities.

• Select top 5 sequences by rank of maximum CDRH3 identity to known binding antibodies.

• Select top 5 sequences by rank of maximum VH identity to know binding antibodies.

Together, these three selection steps yield 20 antibodies per antigen target. Antibodies from Step 1 represent selection indepen-

dent of known binding antibodies to avoid any bias, while antibodies from Steps 2 and 3 yield testing antibodies with high similarity to 

known binding antibodies.

For RSV-specific candidates, MAGE was prompted using the RSV-A Fusion glycoprotein F0 (UniProt 53 entry P03420) amino acid 

sequence to generate 10,000 sequences for down selection and validation. Basic filtering was applied as described above, along 

with filtering based on perplexity (PPL < 1.5), heavy chain germline identity (percent VH identity < 98%), and sequence identity to 

training antibodies (maximum CDRH3 identity to any training antibody ≤ 95%). Due to the overrepresentation of CoV-specific anti-

bodies seen in training, the remaining generated sequences were compared to CoV-AbDab antibodies to remove sequences with 

CDRH3s similar to CoV-specific antibodies (CDRH3 percent identity > 70%).

Following filtering, antibodies were selected for validation based on three separate criteria groups. First, an unbiased group was 

selected by clustering generated CDRH3s using hierarchical clustering based on a Levenshtein identity matrix with a maximum iden-

tity distance of 20% within each cluster. One sequence was then randomly sampled from each of the top 10 largest clusters, for a 

total of 10 unbiased sequences selected for validation. For the unbiased group, we selected generated sequences with CDRH3 iden-

tity ≥75% and equal CDRH3 length compared RSV-A-specific training antibodies. From these matches, 10 antibodies were 

randomly selected from unique CDRH3 clusters. Finally, three generated antibodies with CDRH3 identity ≥70% to RSV-A-specific 

training antibodies and CDRH3 identity ≥60% to MPV-A-specific training antibodies were selected. In total, 23 antibodies were 

selected for experimental validation.

For H5N1-specific candidates, MAGE was prompted using the highly pathogenic avian influenza virus H5/TX/24 hemagglutinin 

sequence (Strain A/Texas/37/2024, GenBank accession number PP577943.1 32 ) amino acid sequence as a prompt to generate
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1,000 sequences for down selection and validation. Basic filtering was applied as described above, along with filtering based on 

heavy chain germline identity (percent VH identity < 100%). Antibodies were then selected for validation based on CDRH3 Levensh-

tein identity to H5-specific training antibodies. Generated sequences were randomly selected from four CDRH3 identity bins: [80% - 

85%) (n = 3), [85% - 90%) (n =6), [90% - 95%) (n = 6), and [95% - 99%) (n = 3) for a total of 18 antibodies. Since this exact flu strain 

sequence was not seen in training, no unbiased group was selected for testing.

Training consensus sequence alignments

The following consensus alignment was performed for each antigen target presented. Training antibodies for comparison were 

selected based on antigen sequence identity using thresholds of 0.95 for RBD (to capture only index strain-specific antibodies), 

0.9 for H5, and 0.9 for RSV-A F. Within these groups, antibodies were grouped by VH gene and numbered with the IMGT numbering 

scheme using ANARCI. For residues in the VH region up to, but excluding, the CDRH3, a consensus sequence was constructed by 

finding the most frequently used amino acid at each position. MAGE-generated antibodies were then compared to these consensus 

sequences, grouped based on antigen-specificity and VH gene usage, using Levenshtein distance of the VH region. 

Developability profiles with Therapeutic Antibody Profiler (TAP)

For experimentally validated antibodies, the sequences were analyzed using the TAP2 web server to compare antibody variable chain 

sequences to the clinical stage therapeutic guidelines. For each metric, the values for all clinical-stage antibodies presented in Raybould 

et al. were obtained from the provided supplemental data and visualized for comparison to the MAGE-generated antibodies.

Antibody candidate validation

Antibody expression and purification

For validation and characterization of generated antibody sequences, variable genes were synthesized as cDNA and were inserted 

into bi-cistronic plasmids encoding for the constant regions of the heavy chain and either the kappa or lambda light chain, for each 

antibody (Twist BioScience). DH5α cells were transformed with the antibody DNA, and the resulting ampicillin resistant colonies were 

grown in LB broth. Plasmid DNA was isolated from the bacterial cultures using a plasmid purification kit (Qiagen). The purified anti-

body DNA was transfected into Expi293F cells using ExpiFectamine transfection reagent (Thermo-Fisher Scientific), and antibodies 

transiently expressed in FreeStyle F17 expression media (Thermo-Fisher) supplemented 0.1% Pluronic Acid F-68 and 20% 4 mM 

L-glutamine. Cells were cultured at 8% CO 2 saturation and 37 ◦ C with shaking. Cells were collected five days post transfection 

and centrifuged at a minimum of 5,000 rpm for 20 minutes. Filtered supernatant (Nalgene Rapid Flow Disposable Filter Units with 

PES membrane 0.45 or 0.22 μm) was purified over protein A equilibrated with PBS. Antibodies were eluted from the column with 

100 mM glycine HCl at pH 2.7 directly into a 1:10 volume of 1 M Tris-HCl pH 8 and then buffer exchanged into PBS for storage at 4 ◦ C. 

Antigen expression and purification

For the different binding experiments, SARS-CoV-2 Index S RBD (2019-nCoV) was purchased from Sino Biological catalog number 

(40592-VNAH) while SARS-CoV-2 S Hexapro Index strain, SARS-CoV-2 S XBB.1, and SARS-CoV-1 S were expressed in Expi293F 

cells by transient transfection in FreeStyle F17 expression media (Thermo-Fisher) supplemented to a final concentration of 0.1% Plur-

onic Acid F-68 and 20% 4 mM L-glutamine using ExpiFectamine transfection reagent (Thermo-Fisher) cultured for 4-7 days at 8% 

CO 2 saturation and 37 ◦ C with shaking. After transfection, cultures were centrifuged at 5000 rpm for 20 minutes. Filtered supernatant 

(Nalgene Rapid Flow Disposable Filter Units with PES membrane 0.45 or 0.22 μm), was run slowly over equilibrated, 1 mL pre-packed 

StrepTrap XT column (Cytiva Life Sciences). The column was washed with 15 mL of binding buffer (100 mM Tris-HCl, 150 mM NaCl,

1 mM EDTA, pH 8.0), and purified protein was eluted from the column with 10 mL of binding buffer supplemented with 2.5 mM des-

thiobiotin. Protein was concentrated, buffer exchanged into PBS and run on a Superose 6 Increase 10/300 GL on the AKTA FPLC 

system. Peaks corresponding to trimeric species were identified based on elution volume and SDS-PAGE of elution fractions. Frac-

tions containing pure spike were pooled.

Lyra-CoV Spike and BG505 SOSIP v9.3 were expressed in Expi293F cells via transient transfection using ExpiFectamine (Thermo 

Fisher) in FreeStyle F17 media (Thermo Fisher) supplemented with 0.1% Pluronic F-68 and 4 mM L-glutamine. Cultures were incu-

bated at 37 ◦ C with 8% CO₂ and shaking for 5–7 days, then centrifuged at 4,000 rpm for 20 minutes. Supernatants were filtered 

through 0.45 or 0.22 μm PES membranes (Nalgene Rapid-Flow).

Filtered supernatant was loaded onto a 1 mL HisTrap HP column (Cytiva) pre-equilibrated with wash buffer (20 mM sodium phos-

phate, 0.5 M NaCl, 20 mM imidazole, pH 7.4). After washing with 15 mL of the same buffer, bound protein was eluted with 15 mL of 

elution buffer (20 mM sodium phosphate, 0.5 M NaCl, 500 mM imidazole, pH 7.4). Eluted protein was concentrated, buffer exchanged

into PBS, and further purified by size-exclusion chromatography on a Superose 6 Increase 10/300 GL column using an A ¨ KTA FPLC

system. Trimeric species were identified by elution volume and SDS-PAGE, and pure fractions were pooled.

Enzyme-linked immunosorbent assay (ELISA)

Recombinant antigen (SARS-CoV-2 Index RBD, SARS-CoV-2 Index S, XBB.1 spike, SARS-CoV-1 S) was plated at 2 μg/mL overnight 

at 4 ◦ C. The next day, plates were washed three times with PBS supplemented with 0.05% Tween20 (PBS-T) and coated with 5% 

bovine serum albumin (BSA) in PBS-T. Following a one-hour incubation at room temperature (RT), the plates were washed three 

times with PBS-T. Primary antibodies diluted in 1% BSA in PBS-T were then added to the plates, starting at 10 μg/mL with a serial 

1:5 dilution, followed by a one-hour incubation at RT. Plates were then washed three times in PBS-T before adding secondary anti-

body, goat anti-human IgG conjugated to peroxidase, at 1:10,000 dilution in 1% BSA in PBS-T followed by a one-hour incubation at 

RT. Plates were washed for a final three times with PBS-T and then developed by adding TMB substrate to each well. Plates were
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incubated at RT for five minutes, and then 1 N sulfuric acid was added to stop the reaction. Plates were read at 450 nm. ELISAs were 

performed in technical and biological duplicate. The area under the curve (AUC) values were calculated using GraphPad Prism 9.5.0 

to fit a 4-parameter log(agonist) vs. response curve.

Biolayer interferometry

BLI experiments were performed using an OctetRED96e instrument (Sartorius) at 21 ◦ C and a shaking speed of 1000 rpm. For the 

RBD-binding antibodies, purified SARS-CoV-2 Wuhan- Hu-1 RBD-SD1 (residues 319–591) containing a C-terminal 8xHis tag was 

immobilized to Ni-NTA sensortips (Sartorius) to a response level of approximately 1.5 nm in HBS-P buffer (10 mM HEPES pH 7.4, 

150 mM NaCl, 0.005% v/v Surfactant P20) with 20 mM imidazole and 0.1% w/v BSA added. After a 60 s baseline step, immobilized 

RBD-SD1 was dipped into wells containing 2-fold serial dilutions of IgG ranging in concentration from 32 to 0.5 nM (RBD-159, RBD-

238, RBD-409, RBD-839, and RBD-951) or 1024–16 nM (RBD-446) to measure association. 1.5-fold dilutions ranging from 1024 to 

90 nM of RBD-61 and a combination of 1.5-fold (1024–303 nM) and 2-fold (303–38 nM) dilutions of RBD-413 were used to optimize 

the dynamic range of the binding curves for those antibodies. Dissociation was measured by dipping sensortips into wells containing 

buffer only. Data were reference subtracted and kinetics were calculated (high-affinity antibodies only) by fitting curves to a 1:2 biva-

lent analyte model using the Octet Data Analysis Software v11.1.

Binding specificity was measured by immobilizing 8xHis-tagged SARS-CoV-2 Wuhan-Hu-1 RBD-SD1 or 8xHis-tagged prefusion-

stabilized RSV F trimer (DS-Cav1 28 ) to Ni-NTA sensortips to a response level of approximately 1.5 nm in the buffer described above. 

Immobilized antigen was then dipped into wells containing the anti-RBD IgG of interest (4, 16, or 512 nM antibody for immobilized 

RBD-SD1 and 512 nM antibody for immobilized RSV F). Immobilized RSV F was also dipped into wells containing only buffer to 

observe baseline signal drift.

For the RSV F-binding antibodies (Figure S5), purified 8xHis-tagged prefusion-stabilized RSV F trimer (DS-Cav1) was immobilized 

to Ni-NTA sensortips to a response level of approximately 0.8 nm in HBS-P buffer with 20 mM imidazole and 0.1% w/v BSA added. 

After a 60 s baseline step, immobilized Ds-Cav1 was dipped into wells containing 2-fold serial dilutions of Fab ranging in concentra-

tion from 640 to 10 nM (RSV-2245) or 5 to 0.78 μM (RSV-3301) to measure association. Dissociation was measured by dipping 

sensortips into wells containing buffer only. Data were reference subtracted and kinetics were calculated by fitting curves to a 1:1 

(RSV-2245) or heterogeneous ligand (RSV- 3301) model using the Octet Data Analysis Software v11.1.

SARS-CoV-2 Pseudovirus Neutralization Assay

Pseudovirus neutralization assays were performed as previously described. 57 Briefly, spike-pseudotyped lentiviruses were pro-

duced by the co-transfection of HEK293T cells with respective spike variant plasmids, together with an HIV gag-pol packaging 

plasmid (Addgene #8455) and a firefly luciferase encoding transfer plasmid (Addgene #170674). Transfections were performed using 

polyethylenimine. Pseudoviruses titrated to produce approximately 100,000 RLU were incubated with 8 serial 3-fold dilutions for 1 

hour at 37 ◦ C in black-walled 96-well plates. 10,000 HEK293T-ACE2 cells were then added to each well, and plates were incubated at 

37 ◦ C. Luminescence was measured approximately 48 hours later on a GloMax Navigator Luminometer (Promega) using Bright-Glo 

luciferase substrate (Promega) as per the manufacturer’s recommendations. Neutralization was calculated relative to the average of

8 control wells infected in the absence of antibody. IC 50 values were calculated by fitting a four-parameter logistic curve and inter-

polating the concentration at which there is 50% neutralization, using GraphPad Prism v10.1.0.

RSV Neutralization Assay

RSV neutralization assays were performed similarly to previously described protocols (PMID: 37403896). In brief, Vero cells were 

seeded the day before the assay at a density of 2x10 4 cells per well in a 96-well plate in high glucose DMEM supplemented with 

L-glutamine and 10% FBS. Monoclonal antibodies were 2-fold serially diluted starting from a concentration of 50 μg/mL in DMEM 

supplemented with 2% FBS and each antibody dilution was mixed with an equal volume of the same medium containing 100 

TCID50 of RSV virus strain A2 (cat n. NR-52018, BEI Resources) and incubated for 1 hour at 37 ◦ C, 5% CO 2 . Uninfected and infected 

cell wells without the antibody were also included as controls. After the incubation, the antibody-virus mixtures were added to the 

cells and plates were incubated at 37 ◦ C, 5% CO 2 for 72 hours. Plates were then washed with PBS and cells fixed with cold 80% 

v/v acetone in PBS for 10 minutes at RT. After the incubation, the plates were emptied and washed 3 times with wash buffer 

(PBS + 0.3% Tween20). Primary mouse anti-RSV F antibody (cat n. MCA490, Bio-Rad) diluted at 1:1,000 in blocking buffer (wash 

buffer + 7.5% BSA) was then added to the plates and incubated for 1 hour at RT. Following the incubation, the plates were washed

3 times with wash buffer and secondary goat anti-mouse IgG human adsorbed HRP-conjugated secondary antibody (cat. n. 1030-

05, Southern Biotech) diluted 1:1,000 was added and incubated for 1 hour in the dark at RT. Plates were then washed 5 times with 

wash buffer and freshly prepared o-Phenylenediamine dihydrochloride (OPD) substrate added and incubated for 3-5 minutes at RT. 

Reaction was stopped by adding 2N H 2 SO 4 and absorbance read at 490 nm using a PowerWaveXS plate reader (BioTek). 

Influenza reporter virus neutralization assay

Generation of the replication-restricted reporter (R3ΔPB1) H1N1 virus (A/Michigan/45/2015) as well as rewired R3ΔPB1 (R4ΔPB1) 

H5N1 virus (A/Vietnam/1203/2004) is described elsewhere. 58 R4ΔPB1 H5N1 A/Texas/37/2024 virus was prepared similarly. Briefly, 

to generate the R3/R4ΔPB1 viruses the viral genomic RNA encoding functional PB1 was replaced with a gene encoding the fluores-

cent protein (TdKatushka2), and the R3/R4ΔPB1 viruses were rescued by reverse genetics and propagated in the complementary 

cell line which expresses PB1 constitutively. Each R3/R4ΔPB1 virus stock was titrated by determining the fluorescent units per mL 

(FU ml -1 ) prior to use in the experiments. For virus titration, serial dilutions of virus stock in OptiMEM were mixed with pre-washed 

MDCK-SIAT1-PB1 cells (8 × 10 5 cells/ml) and incubated in a 384-well plate in quadruplicate (25 μl well -1 ). Plates were incubated
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for 18–26 h at 37 ◦ C with 5% CO 2 humidified atmosphere. After incubation, fluorescent cells were counted by using a Celigo Image 

Cytometer (Nexcelom) with a customized red filter for detecting TdKatushka2. For the microneutralization assay, serially diluted an-

tibodies were prepared in OptiMEM and mixed with an equal volume of R3/R4ΔPB1 virus (∼8 × 10 4 FU ml -1 ) in OptiMEM. After in-

cubation at 37 ◦ C and 5% CO 2 humidified atmosphere for 1 h, pre-washed MDCK-SIAT1-PB1 cells (8 × 10 5 cells well -1 ) were added 

to the antibody-virus mixtures and transferred to 384-well plates in quadruplicate (25 μl well -1 ). Plates were incubated and counted as 

described above. Target virus control range for this assay is 500 to 2,000 FU per well, and cell-only control is acceptable up to 30 FU 

per well. The percent neutralization was calculated for each well by constraining the virus control (virus plus cells) as 0% neutralization 

and the cell-only control (no virus) as 100% neutralization. A 7-point neutralization curve was plotted against antibody concentration 

for each sample, and a four-parameter nonlinear fit was generated using Prism (GraphPad) to calculate the 50% (IC 50 ) inhibitory 

concentrations.

Cryo-EM sample prep and data collection

RSV F (prefusion-stabilized, PR-DM 36 was mixed to a final concentration of 2.5 mg/mL with 1.5X molar excess of Fabs RSV-2245 and 

RSV-3301 in buffer containing 2 mM Tris pH 7.5, 200 mM NaCl, 0.02% NaN 3 . The complex was incubated for 30 minutes at 4 ◦ C 

before adding 10X CMC CHAPS (VitroEase™ Buffer Screening Kit, Thermo Fisher) to a final concentration of 0.1X CMC. Immediately 

following the addition of CHAPS, 3.5 μL of sample was applied to C-flat 1.2/1.3 300 mesh grids (Electron Microscopy Sciences) that 

had been glow discharged using a PELCO easiGlow (Ted Pella) for 30 s at a current of 20 mA. Using a Vitrobot Mark IV (Thermo 

Fisher), a blot force of 1 was applied for 9 s to blot away excess liquid before plunge-freezing into liquid ethane. Samples were blotted 

in 100% humidity at 4 ◦ C.

1,561 movies were collected from a single grid using a Glacios TEM (Thermo Fisher) equipped with a Falcon 4 detector (Thermo 

Fisher), with the stage tilted to 30 ◦ . All movies were collected using SerialEM v4.0.10 automation software. 59 Particles were imaged at

a calibrated magnification of 0.933 A ˚ /pixel, with an exposure of 2.5 eps for 17s for a total exposure of 49 e/A ˚ 2. Additional details about

data collection parameters can be found in Table S3.

Cryo-EM processing and structure building

Motion correction, CTF estimation, particle picking, and preliminary 2D classification were performed using cryoSPARC v4.6.0 live 

processing 60 (Figure S7). An initial ab initio reconstruction of four classes was performed during live processing using 123,151 par-

ticles. Once data collection was completed, a final iteration of 2D class averaging distributed 610,184 particles into 80 classes using 

an uncertainty factor of 1 and a batchsize of 300 for 25 iterations. From that, 338,721 particles were selected and carried into a het-

erogeneous refinement of the four volumes that resulted from the initial ab initio reconstruction. Particles from the highest quality 

class were used for homogenous refinement of the best volume with applied C3 symmetry. To address remaining particle heteroge-

neity, 210,844 particles (after re-extraction and duplicate removal) were sorted into four classes by performing another Ab initio 

reconstruction, followed by heterogeneous refinement of the four classes using all particles. From this, 140,634 particles were taken 

from the best class and used for a final non-uniform refinement with applied C3 symmetry and with refined per-particle defocus and 

per-group CTF parameters. 61 To improve map quality, the refinement volumes were processed using DeepEMhancer 62 within cry-

oSPARC. 60 An initial model of the complex was generated using AlphaFold 3 (https://alphafoldserver.com) by inputting sequences 

(separately) for RSV F1 and F2, 2245 VH and VL, and 3301 VH and VL. 63 The highest confidence output model was docked into the 

refined volume via ChimeraX v1.8. 64 The structure was iteratively refined and completed using a combination of Phenix v1.21.2, 65 

Coot v0.9.2, 66 and ISOLDE v1.8. 67

LIBRA-seq Experiments

LIBRA-seq antigen expression

For the LIBRA-seq antigen panel, a total of 29 proteins were expressed as recombinant soluble antigens. Influenza, parainfluenza, 

coronavirus, RSV post fusion, hMPV post fusion, and HIV-1 antigens were expressed as described above and then purified over the 

appropriate affinity column at 4 ◦ C.

Recombinant hemagglutinin (HA) proteins all contained the HA ectodomain with a point mutation at the sialic acid-binding site (Y98F), 

a T4 fibritin foldon trimerization domain, and a hexahistidine-tag. HAs were purified by metal affinity chromatography. Parainfluenza vi-

rus type 3 prefusion stabilized F ectodomain (PDB: 6MJZ) was purified by nickel affinity chromatography. SARS-CoV-2 S XBB.1, 

BQ.1.1, SARS-CoV-1 S, HCoV-OC43 S, HCoV-HKU1-S-2P, RSV post fusion, and hMPV post fusion were purified over pre-packed 

StrepTrap XT column (Cytiva Life Sciences), as described above. Single chain HIV-1 gp140 SOSIP variant strain BG505 68 was purified 

over agarose bound Galanthus nivalis lectin (Vector Laboratories cat no. AL-1243-5). Methods have been previously described. 69 

Previously described hMPV F A1(NL/1/00) and B2(TN99-419) antigens were expressed in FreeStyle 293-F cells by transient trans-

fection in FreeStyle 293 expression media (Thermo-Fisher). Cells were co-transfected at a 4:1 ratio of plasmids encoding human 

metapneumovirus F and furin, respectively, using polyethylenimine (PEI). Three hours post-transfection, media was supplemented 

to a final concentration of 0.1% (v/v) Pluronic Acid F-68. After culturing for 6 days at 37 ◦ C and 8% CO 2 saturation, filtered supernatant 

was concentrated and buffer exchanged to PBS using tangential flow filtration. Samples were then run over a gravity-flow affinity 

column at RT. Previously described RSV F (DS-Cav1) A2 and B9320 antigens were expressed similarly but did not include the Plur-

onic F-68 supplementation step. Stabilized ectodomains of hMPV F subtypes A1 and B2, 70 as well as RSV strains A2 28,71 and 

B9320 F (DS-Cav1 72 ), were purified over Strep-Tactin Sepharose resin (IBA Lifesciences) in a gravity column.

CHDC, SYD_2012, and GII.17 P domains were recombinantly expressed and purified as previously described. 73
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All proteins were quantified using UV/vis spectroscopy. Antigenicity of proteins was characterized by ELISA with known mono-

clonal antibodies specific for that antigen. Proteins were frozen and stored at -80 ◦ C until use. Protein antigens were biotinylated using 

EZ-link Sulfo-NHS-Biotin No-Weigh kit (Thermo Fisher) according to manufacturer’s instructions. A 50:1 biotin-to-protein molar ratio 

was used for all reactions.

LIBRA-seq antigen barcodes

For each antigen, a unique DNA barcode was directly conjugated to the antigen using a SoluLINK Protein-Oligonucleotide Conjuga-

tion kit (TriLink, S-9011) according to manufacturer’s protocol. We used oligonucleotides composed of a 15 bp antigen barcode, a 

sequence designed for annealing to the template switch oligo on the 10X bead-delivered oligos, and contains truncated TruSeq small

RNA read 1 sequences in the following structure: 5 ′ -CCTTGGCACCCGAGAATTCCANNNNNNNNNNNNNCCCATATAAGA*A*A-3 ′ ,

where Ns represent the antigen barcode. For each antigen we used the following barcode sequences:

Norovirus GII.4 Sydney P (ATTCGCCTTACGCAA), Norovirus CHDC P (AACCTTCCGTCTAAG), Norovirus GII.17 P (GCAGCGTATA 

AGTCA), HIV-1 env BG505 (TAACTCAGGGCCTAT), HIV-1 env B4.1 (TACGCCTATAACTTG), HIV-1 env ZM197 (CAGATGATCCAC 

CAT), SARS-CoV-2 XBB.1 (AGACTAATAGCTGAC), SARS-CoV-2 BQ.1.1 (CTTCACTCTGTCAGG), SARS-1 (TGGTAACGACA 

GTCC), HCoV-OC43 (GACCTCATTGTGAAT), HCoV-HKU1 (CAGCCCACTGCAATA), H3 HK68 (AACCCACCGTTGTTA), H3 Perth19 

(GACAAGTGATCTGCA), H1 MI15 (GCTCCTTTACACGTA), H1 NC99 (TGTGTATTCCCTTGT), H2 SG57 (GGTAGCCCTAGAGTA), HA 

B/Wash/19 (TGACCTTCCTCTCCT), H5 VN04 (TCACAGTTCCTTGGA), H5 IN05 (TCATTTCCTCCGATT), H7 Anh13 (CAGTAGATGGA 

GCAT), H9 HK09 (CAGTAAGTTCGGGAC), H10 JD13 (CCGTCCTGATAGATG), RSV-A F (TTTCAACGCCCTTTC), RSV-B F (GTGTGT 

TGTCCTATG), RSV-A post fusion F (AATCACGGTCCTTGT), MPV-A F (CAGGTCCCTTATTTC), MPV-B F(ACAATTTGTCTGCGA), 

MPV-A post fusion F(ATCGTCGAGAGCTAG), PIV-3 F (GTAAGACGCCTATGC).

Oligos were ordered from Sigma-Aldrich and IDT with a 5 ′ amino modification and HPLC purified.

Donor peripheral blood mononuclear cell (PBMCs) samples

Healthy peripheral blood mononuclear cell (PBMC) samples were purchased from StemCell Technologies. SARS-CoV-2 PBMCs 

were collected from individuals with SARS-CoV-2 infection, 60 days post symptom onset during May-June 2020. Influenza vaccina-

tion PBMCs were collected from individuals 28 days following vaccination with the 2021-2022 quadrivalent flu vaccine. HIV-1 

PBMCS were collected between 2007-2013 from individuals with confirmed HIV-1 status.

Flow cytometry enrichment of antigen-specific B cells

For a given sample, cell mixtures were stained and mixed with fluorescently labeled DNA-barcoded antigens and other antibodies, 

and then sorted using fluorescence activated cell sorting (FACS). Cells were counted, washed with DPBS supplemented with 0.1% 

Bovine serum albumin (BSA), and resuspended in DPBS-BSA to be stained with the following cell markers: Ghost Red 780, CD14-

APCCy7, CD3-FITC, CD19-BV711, and IgG-PECy5. Additionally, antigen-oligo conjugates were added to the stain. Following a 

30-minute incubation in the dark on ice, the cells were washed three times with DPBS-BSA then incubated for 15 minutes in the 

dark on ice with Streptavidin-PE label cells with bound antigen. Cells were then resuspended in DPBS-BSA and sorted on the 

cell sorter. Antigen positive cells were bulk sorted and then delivered to the Vanderbilt VANTAGE sequencing core at an appropriate 

target concentration for 10X Genomics library preparation and subsequent sequencing. FACS data were analyzed using FlowJo. 

Sequence processing and bioinformatics analysis for LIBRA-seq

We followed our established pipeline, 19 which takes paired-end FASTQ files of oligonucleotide libraries as input, to process and 

annotate reads for cell barcodes, unique molecular identifiers (UMIs) and antigen barcodes, resulting in a cell barcode-antigen bar-

code UMI count matrix. B cell receptor contigs were processed using CellRanger 3.1.0 (10x Genomics) and GRCh38 Human V(D)J 

7.0.0 as reference, while the antigen barcode libraries were also processed using CellRanger (10x Genomics). The cell barcodes that 

overlapped between the two libraries formed the basis of the subsequent analysis. Cell barcodes that had only non-functional heavy 

chain sequences as well as cells with multiple functional heavy chain sequences and/or multiple functional light chain sequences, 

were eliminated, reasoning that these may be multiplets. We also aligned the B cell receptor contigs to IMGT reference genes using 

HighV-Quest. 50 The annotated sequences were then combined with an antigen barcode UMI count matrix. Finally, we determined the 

LIBRA-seq score (LSS) for each antigen in the library for every cell as previously described. 19 Binding was defined using a conser-

vative threshold of LSS ≥ 2, based on validation results from previous LIBRA-seq studies. Cells which bound to multiple antigens 

from different viral families were filtered out to remove polyreactive BCRs, along with any cells from non-HIV donors which bound 

HIV antigens.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using GraphPad Prism v9.5.0 and v10.1.0. ELISAs were analyzed by fitting a four-parameter lo-

gistic regression curve to determine area under the curve (AUC). Neutralization assays were analyzed by fitting a four-parameter lo-

gistic curve to interpolate IC 50 values. For BLI experiments, binding kinetics were fit using a 1:2 bivalent analyte model or a 1:1 model 

depending on antibody characteristics. Clustering of CDRH3 sequences was performed using hierarchical clustering based on Lev-

enshtein distances. Model training was monitored via evaluation loss and accuracy using 10% held-out validation data.
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Supplemental figures

Figure S1. MAGE fine-tuning and generated antibody sequence features, related to Figure 1

(A) Counts of antibody-antigen pairs in training data grouped by source. A more detailed breakdown is provided in Table S1.

(B) Counts of binding (LSS > 2 and UMI > 30) cells screened by LIBRA-seq across 4 donors.

(C) Training and evaluation loss for 5 epochs (iterations over training data) of fine-tuning.

(D) Scatterplot showing relationship between VH identity and the OASis humanness score for antibodies generated against RBD. Dotted line at humanness score 

of 0.7 represents the threshold used in antibody selection.

(E) Distributions of CDR3 length for heavy and light variable sequences in generated antibodies.

(F) Distributions of percent identity to germ line for variable heavy (VH) and light (VL) chains in antibodies generated against RBD.

(G) Distribution of the maximum CDRH3 identity between each generated antibody and the training data.

(H) Distance to the closest training example for the generated VH and VL sequences is shown. Size of the points represents the maximum LCDR3 to any training 

sequence, and color represents the maximum HCDR3 to any training sequence.
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Figure S2. Validation of RBD binding by MAGE-generated antibodies, related to Figure 2

(A–C) ELISA dilution curves for (A) HCDR3 identity selection group, (B) VH identity selection group, and (C) unbiased-selection group. Positive control SARS-

CoV-2 RBD-binding antibody (S309) and negative control HIV-1 specific antibody (VRC01) are shown in black.

(D) ELISA AUCs from curve fitted to dilution series. Same as Figure 2C but includes exact AUC values.

(E) BLI sensorgrams (also shown in Figure 2E) for the association and dissociation kinetics of high-affinity antibodies binding to immobilized SARS-CoV-2 RBD-

SD1. Data (black) were fitted to a 1:2 bivalent analyte model. Curve fits are shown in red. The bivalent analyte model determines kinetic parameters for the first 

binding event (KD1, ka1, and kd1), representing affinity of binding and for avid binding of the second antibody arm (KD2, ka2, and kd2).

(F) BLI sensorgrams for binding of low-affinity antibodies to immobilized SARS-CoV-2 RBD-SD1. Data were single reference subtracted and are shown in black.

(G) BLI sensorgrams showing antibody specificity for SARS-CoV-2 RBD. Binding was measured for antibodies to immobilized SARS-CoV-2 RBD-SD1 or pre-

fusion-stabilized RSV F (DS-Cav1).
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Figure S3. Sequence characteristics and functional properties of RBD-binding antibodies, related to Figure 3

(A) Similarity of designed RBD binders to published RBD-specific antibodies from the CoV-AbDab. Identity is calculated as Levenshtein distance, divided by 

length of the longer CDR sequence. Pairs are colored based on matching of the V genes.

(B) ELISA dilution curves for RBD binders against panel of SARS-CoV-2 spike variants. Used to calculate AUC values displayed in Figure 3D.

(C) Neutralization dilution curves from pseudovirus neutralization assays for RBD binders generated by MAGE. Used to calculate IC 50 values shown in Figure 3E.
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Figure S4. Validation of binding antibodies designed against RSV-A and H5, related to Figures 5 and 6

(A) Initial ELISA screening for MAGE-generated antibodies against H5/TX/24 hemagglutinin was performed at a concentration of 10 μg/mL. Dotted line represents 

the threshold for further validation.

(B) ELISA AUC for H5 prefusion binding antibodies. Calculated from curve shown in Figure 5A.

(C) Initial ELISA screening for MAGE-generated antibodies against RSV-A prefusion was performed at a concentration of 10 μg/mL. Dotted line represents the 

threshold for further validation.

(D) ELISA AUC for RSV-A prefusion binding antibodies. Calculated from curve shown in Figure 6A.

(E) Neutralization dilution curves against hemagglutinin variants. Used to calculate IC 50 values shown in Figure 5F.
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Figure S5. Comparison of MAGE-generated antibodies to germline, training consensus sequences, and therapeutic antibodies, related to 

Figure 6

(A) ELISA dilution curves for germline-reverted RSV-2245 and RSV-3301 against RSV-A prefusion F. The generated variable sequences were aligned to human 

germlines, then VH sequences up to CDRH3 were replaced with germline residues.

(B) AUC values for germline-reverted ELISA dilution curves.

(C) BLI sensorgrams for binding of RSV-2245 and RSV-3301 Fabs to immobilized RSV-A F. Data (black) for RSV-2245 binding were fitted to a 1:1 binding model to 

determine binding affinity (K D ). For RSV-2254, the resulting binding curves displayed rapid saturation during the association phase, followed by a similarly rapid 

dissociation. A binding affinity (K D ) of 150 nM was determined by fitting the curves to a 1:1 binding model. RSV-3301 binding resulted in curves demonstrating a 

fast initial association rate that slowed but did not reach saturation during the 1,200-second association step. These curves fit poorly to a 1:1 binding model. 

Because the RSV-3301 epitope is largely conserved in postfusion (F), simultaneous binding of Fab to pre- and postfusion trimers might be observed. These 

considerations led us to fit the curves to a heterogeneous ligand model, resulting in apparent K D values (K D1 and K D2 ) of 6.7 μM and 4.5 nM, respectively.

(D) The poorly fitted 1:1 binding model and respective K D for RSV-3301.

(legend continued on next page)
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(E) Prompt-specific training antibodies were grouped by VH gene and then aligned using IMGT numbering. From this alignment, the most frequently used residue 

at each position was used to construct a consensus sequence for each VH gene within the training sequences for each antigen-specificity. Each MAGE antibody 

was compared to the consensus sequence for that VH gene and the closest training match using Levenshtein distance, for all generated antibodies against 

SARS-CoV-2 RBD, H5/TX/24, and RSV-A F.

(F) H5-384 aligned to the consensus and germline sequences for H5-specific IGHV4-34 antibodies from training. The bar plot represents the consensus score, 

showing the proportion of training antibodies which use the most common residue at each position, colored based on whether H5-384 contains the consensus 

residue (gray = consensus, blue = different). Non-germline residues are shown in red.

(G) MAGE antibody RSV-3301 aligned to the consensus and germline sequences for RSV-specific IGHV2-5 antibodies from training.

(H) TAP scores for validated MAGE antibodies. Gray histogram represents distribution of therapeutic antibodies, with orange lines representing Amber Flag 

regions and red lines representing Red Flag regions based on suggested risk thresholds1. Black lines represent validated MAGE antibodies across all prompt 

groups with scores for: total CDR length, patches of positive charge, patches of surace hydrophobicity, patches of negative charge, and structural Fv charge 

symmetry parameters.
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Figure S6. Comparison of neutralization profiles for MAGE antibodies and closest training matches, related to Figures 5 and 6

(A and B) Neutralization dilution curves for (A) MAGE-generated RSV antibodies and (B) their closest training matches.

(C) Summary of IC 50 values for antibodies from (A and B), along with sequence feature comparisons based on Levenshtein distance and identity (distance 

normalized by sequence length).

(D) Neutralization dilution curves for MAGE-generated H5 antibodies and their closest training matches against hemagglutinin subtypes.

(E) IC 50 values from (D), grouped by MAGE antibody and closest training match.
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Figure S7. Cryo-EM experimental details for RSV-A F complex with RSV-3301 and RSV-2245, related to Figure 7

(A) Cryo-EM data processing workflow.

(B) Gold-standard Fourier shell correlation, conical Fourier shell correlation, and viewing distribution plots for the RSV F + Fab RSV-2245 + Fab RSV-3301 

refinement.

(C) The final map for the RSV F + Fab RSV-2245 + Fab RSV-3301 complex, colored according to local resolution.

(D) The binding interface for RSV-2245 and RSV-A F. The model is shown with RSV-A F colored pink, the 2,245 heavy chain colored blue, and the 2,245 light chain 

colored light blue. The map is partially transparent gray.

(E) The binding interface for RSV-3301 and RSV-A F. The 3,301 heavy chain is colored green, and the 3,301 light chain is colored light green.
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